Athermal domain-wall creep near a ferroelectric quantum critical point.
نویسندگان
چکیده
Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.
منابع مشابه
Quantum Phenomena Emerging Near a Ferroelectric Critical Point in a Donor–Acceptor Organic Charge-Transfer Complex
When a second-order transition point is decreased to zero temperature, a continuous quantum phase transition between different ground states is realized at a quantum critical point (QCP). A recently synthesized organic charge-transfer complex, TTF-2,5-QBr2I2, provides a platform for the exploration of the quantum phenomena that accompany a ferroelectric QCP. Here, we summarize the recent result...
متن کاملDomain wall roughness and creep in nanoscale crystalline ferroelectricpolymers
Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers" (2013). Stephen Ducharme Publications. Paper 85.
متن کاملSuppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films
Switching dynamics of ferroelectric materials are governed by the response of domain walls to applied electric field. In epitaxial ferroelectric films, thermally-activated 'creep' motion plays a significant role in domain wall dynamics, and accordingly, detailed understanding of the system's switching properties requires that this creep motion be taken into account. Despite this importance, few...
متن کاملDomain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films.
The static configuration of ferroelectric domain walls was investigated using atomic force microscopy on epitaxial PbZr(0.2)Ti(0.8)O(3) thin films. Measurements of domain wall roughness reveal a power-law growth of the correlation function of relative displacements B(L) alpha L(2zeta) with zeta approximately 0.26 at short length scales L, followed by an apparent saturation at large L. In the sa...
متن کاملIntrinsic ferroelectric switching from first principles.
The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016